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Importance of studying Nonlinear
Systems

= No model of a real system is truly linear
even if it is protitable to study their linear
approximation.

= Nonlinear systems may show complex
ettects (chaos, bifurcations, etc) that
cannot be anticipated.

= [t brings many disciplines together:
mathematics, physics, biology, chemistry,
engineering, economics, medicine, etc.
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Importance of Linearization Methods

“They allow to adopt linear control
techniques to analyze nonlinear
problems”
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Some Linearization Techniques

® Jacobian Linearization

s Carleman Linearization

m [inearization using Lie Series

m Iteration Technique

m Feedback linearization

= [inearization via changes of variables

“Linearization methods and control of nonlinear systems” Monash University, Australia



Carleman Linearization
and Lyapunoo Stability
Theory

Navarro Hernandez, C. and Banks, S.P. (2004), A Generalization of
Lyapunov's Equation to Nonlinear Systems, NOLCOS 2004, Stuttgart,
Germany, September 2004

Banks, S.P. and Navarro Hernandez, C. (2005), A New Proof of McCann’s
Theorem and the Generalization of Lyapunov’s Equation to Nonlinear
Systems, I[ICIC, to appear.
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Carleman Linearization

Nonlinear | Infinite Dimensional

System Linear System

m Kowalski, K. and Steeb, W. Nonlinear
%namical systems and Carleman linearization.

orld Scientific Publishing Co. Singapore,
1991.

s Gaude, Brian. Solving nonlinear aeronautical
problems using the Carleman Linearization

Method. Sandia National Laboratories Report,
U.S.A, 2001.
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Applications to Control

m Domains of attraction of nonlinear feedback

systems (Loparo K.A. and Blankenship (1978) Estimating the
domain of attraction of nonlinear feedback systems. IEEE Trans. Aut.

Control, AC-23, 602)

= Design of observers with linear error dynamics
(Deutscher, J. (2003) Asymptotically exact input-output linearization
using Carleman linearization. ECC2003 Cambridge, UK)

m Solutions of Lotka-Volterra models (Steeb and Wilhelm,
1980)

s Power series expansions for nonlinear systems
(Brenig and Fairén, 1951)

= Construction of approximate Monte-Carlo-like
solutions to nonlinear integral equations (Ermakov,
1984)

s Study of nonlinear partial differential equations
(Kowalski, 1988)
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Carleman Linearization

Consider the following nonlinear system

x = f(x)

the Taylor series can be written as

f(x)=3 A"

where

e

4L 070 [ AT =x®x®..®x
A 8in . -8xl. f—t;'rmes

)
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To obtain the linear system

T=x®x®.®x

k—times
k
=3 x®.0i®..®x
i=l1 z
k
:Z XX.QfM(x)®..Qx
i=l1

Zk: ®.0> A'X1®..®x
=1 4
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Therefore

L _ ZAlfx[k—l—ﬁ—l]
/

k
A=) I®.QI®A ®IR..®I
=1

A=A QI" M+ 1® A4
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Setting
w=(xxx,x®x®x,---)"

We obtain the infinite linear system

w=Aw

/All A AL .
0 A, A A
0 0 4, A A

\ - s s s : . )
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Lyapunov’s Stability

V(x ) is a Lyapunov function for the equilibrium X
if

L V(x)>0

. Vx#x%*
, Vi(x)<0

Problem —— Find the Lyapunov function
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Lyapunov’s Equation
Linear time invariant system
x = Ax
is asymptotically stable iff

A'P+PA=-0

The Lyapunov function is

V =x" Px
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m Vanelli, A. and Vidyasagar, M. (1985).
Maximal Lyapunov functions and domains ot
attraction for autonomous nonlinear system:s,

Automatica, 21 y 69-80. (Lyapunov functions that are rational
rather than polynomial)

m Camilli, F., Grune L. and Wirth, F. Zubov's
method for perturbed differential equations.
NOLCOS 2004. Stuttgart, Germany (Generation of

Lyapunov functions and domains of attraction using Zubov method)
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Lyapunov’s Equation and McCann’s
Theorem

Consider the linear system w=Aw

and let P satisfy the Lyapunov equation

A'P+PA =-1

Then,
V = <(x,x®x,x®x®x,...),P(x,x®x,x®x®x,...)>

= (X, x®x,x®x®x.. .)H2 = —(exz — 1)
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The nonlinear system

x = f(x)

is globally asymptotically stable iff
A'P+PA=-1 ©

is soluble for P (positive definite) .

McCann’s Theorem - Global asymptotically stable

dynamical systems are equivalent to linear systems.
(McCann, 1979)

If x= f(x) isglobally asymptotically stable there is a
positive definite solution of (*)
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Example #1

Consider the nonlinear system x = —Xx + x3

and obtain the infinite linear system W = Aw

(1 0 1 O oo cer o)
0O -2 0 2 0
O 0 -3 0 3 O

w=(x,x",x,x",..)
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Truncate A and solve Lyapunov Equation

-1 0 O -1 0 1
0O -2 0 |P+P| 0 -2 0 |=-1
1 0 -3 0 0 -3

Obtain Lyapunov function
— 12 1.4 5 -6
= >X +T5X +357X
V=(x"-1(x"+2x" +3x°

Truncating A to a 7x 7 matrix
1 , 1 4 1 4 1 g 253 4, 1087 ,, 1343 4,

V="x+ x4+ x4+ x+ —x + X
2 2 2 2 640 3840 10752

7680 N 11520 MO 15360 N 15180 10+13O44 n o 6715 44

V=(x"-Dx"+_ x4+ X+ x )
3840 3840 3840 3840 3840 3840
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Fig.1 V(x)vsx

1.2 1 4 5 .6
V=5x"+3x +5x

Fig. 2 V(x) VS X

V=(x"-1)(x>+2x" +3x°%
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Example #2 i =—x+4y

Consider the nonlinear system

y=—x-y

Phase Portrait

Fig. 3 Phase Portrait
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| x=—-x+4y
Nonlinear System:

y=—x-y

Now

. 2 2 R) 2 2 2 2 2 2 R) T
W—(x,y,x XV, VX,V X , X V, X V, XV , X V, X}y , X}V ,V ,)
X xéx X®;®X

(4" 42 4 0 0 0)
0 A A 4 0 0
0 0 4 A 4 0

N R T
_ O 0 0 O O 0 00 0 0 0 o
4 4= £ =
40 00 0 0 0000000 -1
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Fig.5 V(x,y) vsxy
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Conclusions

* A method to find a Lyapunov function for stable
nonlinear systems by using a defined Lyapunov
equation.

*By increasing the number of terms of the
truncation of the infinite-dimensional Lyapunov
equation it is expected that the method will
approximate in a better way the basin of attraction
of the systems.

o[t is computationally ditficult as the operator A
grows exponentially and the Lyapunov
expressions are complicated
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Future Work

eStudy of the required level of truncation of the
Lyapunov equation

e Use of the Lyapunov functions for Control
Design by introducing unknown parameters in
the operator A

* Definition of the Lyapunov function by
expanding the nonlinear system using
orthogonal functions
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Iteration Technique and
Fault Detection for
Nonlinear Systems

Navarro Hernandez, C, Crusca, F., Aldeen, M. and Banks, S.
P. (2005), Fault Detection for Nonlinear Systems usin

Linear Aggroximations, To be presented at IFAC2005, Prague,
Cz. July 2005
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Iteration Technique

Nonlinear | Limit of Sequence of

System LTV Systems

s Tomas-Rodriguez, M., Banks, S., (2003) Linear
approximations to nonlinear dynamical
systems with applications to stability and
spectral theory, IMA Journal of Mathematical

ontrol and Information, 20, 89-103.
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Applications to Control

m Stability and spectral theory

Tomas-Rodriguez M. and Banks, S., (2003) Linear approximations to
nonlinear dynamical sttems with applications to stability and sgpectral
theory, IMA Journal of Mathematical Control and Information, 20, 89-103.

= Design of Observers

Navarro Hernandez, C., Banks, S.P. and Aldeen, M. (2003) Observer
design for nonlinear systems using linear a%proximations, IMA Journal
of Mathematical Control and Information, 20, 359-370.

s Pole Placement for Nonlinear Systems

Tomas-Rodriguez M. and Banks, S.P. (2004). Pole placement for non-
linear systems., NOLCOS 2004, Stuttgart, Germany.

s Optimal Control

Cimen, T and Banks, S.P. (2004). Nonlinear optimal tracking control
with application to super-tankers for autopilot design, Automatica.
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Having the nonlinear system
x=A(x)x,x(0)=x, e R".

and introducing the sequence of linear time varying equations:

XM= A(x)xM (@), ™M (0) = x,

i(0) = A ) (1), 5(0) = x,

where 1I=number of approximations, it can be shown that the solution
of this sequence converges to the solution of the original nonlinear
system if the Lipschitz condition 1s statisfied.

Lipschitz condition HA(X) — A(J/)H < O!HX - J/H
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Solution to Van der Pol oscillator (xlj: [— X +1 1]{’@]

X, Xy

. [i] [i-1] 2 (7]
and for the ith approximation, 1 @O~ @Oy +1 X (0)
i, (1) -1 0\ x," ()

=olution and Approximations for the %'an der Pol Oscillator in the Phase Plane

1.4

Fig 6. Solution and _ .
Approximations of the D " [— Solution
Van der Pol Oscillator 45 _ i , S A0
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Fault Detection for Nonlinear Systems

Fault — Unacceptable change or failure of at
least one parameter or system
characteristic from its designed or normal
operating conditions

Fault Detection - Determination of system
faults and the time of the on-set faults
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Model based-approach

(based on the mathematical

model)
|

State Estimation-Based Approach

|

Reconstruct plant states and generate residuals
by comparing estimated outputs with the
measurements

Type of Fault: Abrupt and Additive
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Fault Detection for LTV Systems
x(t)=Ax+Bu+B w+ Fu + F, 1,

LTV
system: V() =Cx+v,x(t)=x,
Where u control input U sSensor noise
y measurement K1, 4o faults (functions of time)
W process noise £, £5 faults directions

Find linear observer JAC(f )=Ax+ B u+ L(y—Cx)
and residual r=H(y-Cy)

To find a residual primarly affected by the target
fault and minimally by the nuisance faults

Objective —

“Linearization methods and control of nonlinear systems” Monash University, Australia
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LTV Designs

m Chen,R., Mingori,D. and Speyer, J. (2003). Optimal stochastic
fault detection filter, Automatica, 39, 377-390.

" Xu,A., Zhang, Q. (2002). Fault Detection and Isolation based on
Adaptive Observers for Linear Time Varying Systems , 15th
Triennial World Congress, Barcelona, Spain.

m Edelmayer A., Bokor,]., Szigeti, F. and Keviczky, L. (1997). Robust
Detection Filter in the Presence of Time-Varying System
Perturbations, Automatica, 33, No. 3, 471-475.

Design proposed: “Optimal stochastic fault detection filter”
(Chen, Mingori and Speyer)

» Algorithm is easy to program
» Extends the result of the UIO to the time varying case
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Steps in design:

1. Find the filter gain by solving a Ricatti equation
; 1
P=AP+PA" -PC'V'CP+—FQ,F] —FOF' +B,0 B.,P(t,) =P,
Y

w2

L=pcly-1
2. Find the projector
H =[0,Pp1-L, s PP L]
where CPC T'no=pl, pp=dm Fp, A 21, 2..24,
3. Calculate the estimate

x(t) = A%+ Bu+ L(y — C%)

4. Obtain the residual r=H(y—C%)
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[teration Technique — Fault Detection



m Alcorta Garcia,E. and Frank, PM. (1997). Deterministic
nonlinear observer-based approaches to fault diagnosis: a
survey, Control Engineering Practice, 5, 663-670.

= Yang, H. and Saif, SM. (1996) Monitoring and diagnostics
of a class of nonlinear system using a nonlinear unknown
input observer, Proceedings of the 1996 IEEE International
Conference on Control Applications, Dearborn, MI,
September 15-18. (Decomposition of the nonlinear system)

s Frank, P.M., (1994). On-line fault detection in uncertain
nonlinear systems using diagnostic observers: a
survey,Int. |. Systems Sci. 25, 2129-2154.

m Seliger, R. and Frank, P.M. (1991) Fault-Diagnosis by
disturbance decoupled nonlinear observers, Proceedings of
the 30th IEEE Conference on Decision and Control, Brighton,
England, 2248-2253. (Nonlinear state transformations)
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Fault Detection for Nonlinear Systems

. . X(8) = AG)x(#) + B(x)ut) + £, (x) 4 (1) + F5 (x) 14, (1)
Given a nonlinear system ) _ c(xo)x(1),x( )= x

1. Reduction to a sequence of linear time varying approximations

#0(0) = A ) (0)+ B ) () + B G 0) 4 (0) + F (I 0) s (1)
Y0y = CE o) (0),11(0) = x,

2. Design of the Fault Detection Filter at each TV approximation

).C[i](l‘) _ A()%[i_l](t)))%[i] (t)—I—B(x[i_l](t))u[i](f)-I-L[i](t)(y[i](t)—C()Ac[i_l](t))e[i](l‘))
A0y = H(0) () - (@) (1))

3. Obtain the residual at the final approximation
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-8 x, O 1 5—2cos(x,)

Nonlinear W= x, -5 x @O+ 0]g@)+ 1 11,()
—-X, X; —X, 1 1+ sin(x,)
Example

Mo fault ca=a

H = H
impulses of magnitude 3 at t=5
to t=5.5 sec.

timation ermor

E=

10
Time(=ac)

IC.
x(0)=[.2,.2,.4]

H
g
2
E
i

2(0)=[.5,0,.2]

timation eror

E=

Fig 8. Estimation
0 12 5 & o error

Time(=ac)
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Mo fault ca=s

Re=idual

MuEance fault ca=s

q
o
i
vd

Fig 9. Time
response of the g ARt
residual at
different fault
cases
(gamma=10e-4)

Fe=idual
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Conclusions

m The residual is primarily atfected by the
target fault and minimally by the nuisance
faults

= New method to design a fault detection
filter for nonlinear systems

m Sometimes there are problems with the
solution of the Ricatti equation

“Linearization methods and control of nonlinear systems” Monash University, Australia
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Future Work

= Study of the required number of
approximations

m Combine fault detection with control
m Reconstruction of the fault
m Further study of the limiting case

“Linearization methods and control of nonlinear systems” Monash University, Australia
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General Conclusions and
Recommendations

= Present two different linearization techniques and their
application to different problems in Control Theory

= The choice of the linearization technique depends on the
specific problem to be solved

= Important to know ways of attacking nonlinear problems

s Further study of the previous linearization techniques and
applications

s Study and comparison of the techniques

“Linearization methods and control of nonlinear systems” Monash University, Australia



Thank you
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